The Oncogenic EWS-FLI1 Protein Binds In Vivo GGAA Microsatellite Sequences with Potential Transcriptional Activation Function
نویسندگان
چکیده
The fusion between EWS and ETS family members is a key oncogenic event in Ewing tumors and important EWS-FLI1 target genes have been identified. However, until now, the search for EWS-FLI1 targets has been limited to promoter regions and no genome-wide comprehensive analysis of in vivo EWS-FLI1 binding sites has been undertaken. Using a ChIP-Seq approach to investigate EWS-FLI1-bound DNA sequences in two Ewing cell lines, we show that this chimeric transcription factor preferentially binds two types of sequences including consensus ETS motifs and microsatellite sequences. Most bound sites are found outside promoter regions. Microsatellites containing more than 9 GGAA repeats are very significantly enriched in EWS-FLI1 immunoprecipitates. Moreover, in reporter gene experiments, the transcription activation is highly dependent upon the number of repeats that are included in the construct. Importantly, in vivo EWS-FLI1-bound microsatellites are significantly associated with EWS-FLI1-driven gene activation. Put together, these results point out the likely contribution of microsatellite elements to long-distance transcription regulation and to oncogenesis.
منابع مشابه
Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1
Transcription factors have been considered undruggable, but this paradigm has been recently challenged. DNA binding natural product mithramycin (MTM) is a potent antagonist of oncogenic transcription factor EWS-FLI1. Structural details of MTM recognition of DNA, including the FLI1 binding sequence GGA(A/T), are needed to understand how MTM interferes with EWS-FLI1. We report a crystal structure...
متن کاملEmergent Properties of EWS/FLI Regulation via GGAA Microsatellites in Ewing's Sarcoma.
ETS proteins are a family of transcription factors that play important roles in the development of cancer. The Ewing's sarcoma EWS/ETS fusion oncoproteins control a number of cancer-relevant phenotypes in that disease. We recently demonstrated that EWS/FLI, the most common EWS/ETS fusion in Ewing's sarcoma, regulates a portion of its target genes, including the critical target NR0B1, via GGAA-c...
متن کاملMicrosatellites with Macro-Influence in Ewing Sarcoma
Numerous molecular abnormalities contribute to the genetic derangements involved in tumorigenesis. Chromosomal translocations are a frequent source of these derangements, producing unique fusion proteins with novel oncogenic properties. EWS/ETS fusions in Ewing sarcoma are a prime example of this, resulting in potent chimeric oncoproteins with novel biological properties and a unique transcript...
متن کاملFunctional analysis of the EWS/ETS target gene uridine phosphorylase.
The EWS/ETS fusion proteins associated with Ewings family tumors (EFTs) are thought to promote oncogenesis by acting as aberrant transcription factors. Uridine phosphorylase is a gene that is up-regulated by structurally distinct EWS/ETS fusions. Ectopic expression of uridine phosphorylase was able to support anchorage-independent cell growth, indicating that it plays an active role in the onco...
متن کاملIdentification of two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma
Ewing sarcoma is a bone malignancy of children and young adults, frequently harboring the EWS/FLI chromosomal translocation. The resulting fusion protein is an aberrant transcription factor that uses highly repetitive GGAA-containing elements (microsatellites) to activate and repress thousands of target genes mediating oncogenesis. However, the mechanisms of EWS/FLI interaction with microsatell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009